Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
PLoS One ; 17(11): e0277925, 2022.
Article in English | MEDLINE | ID: covidwho-2140675

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in late 2019, and quickly spread to every continent causing the global coronavirus disease 2019 (COVID-19) pandemic. Fast propagation of the disease presented numerous challenges to the health care industry in general and especially placed enormous pressure on laboratory testing. Throughout the pandemic, reverse transcription-PCR (RT-PCR)-based nucleic acid amplification tests have been the primary technique to identify acute infections caused by SARS-CoV-2. Since the start of the pandemic, there has been a constantly growing need for accurate and fast tests to enable timely protective and isolation means, as well as rapid therapeutic interventions. Here we present an evaluation of the GenomEra test for SARS-CoV-2. Analytical and clinical performance was evaluated in a multicenter setting with specimens analyzed using standard-of-care (SOC) techniques. Analytical sensitivity was assessed from spiked respiratory swab samples collected into different viral transport media, and in the best performer eSwab, the limit of detection was found to be 239 IU/mL in a heat processed sample. The GenomEra SARS-CoV-2 Assay Kit did not show specificity/cross-reactivity issues with common micro-organisms or other substances commonly found in respiratory specimens when analyzed both in vitro and in silico. Finally, the clinical performance was assessed in comparison to SOC techniques used at four institutions. Based on the analysis of 274 clinical specimens, the positive agreement of the GenomEra SARS-CoV-2 Assay Kit was 90.7%, and the negative agreement was 100%. The GenomEra SARS-CoV-2 Assay Kit provided accurate detection of SARS-CoV-2 with a short turnaround time in under 90 min.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Biological Assay , Pandemics , Cross Reactions
2.
Euro Surveill ; 27(16)2022 04.
Article in English | MEDLINE | ID: covidwho-1809283

ABSTRACT

Recombinant sequences of the SARS-CoV-2 Omicron variant were detected in surveillance samples collected in north-western Finland in January 2022. We detected 191 samples with an identical genome arrangement in weeks 3 to 11, indicating sustained community transmission. The recombinant lineage has a 5'-end of BA.1, a recombination breakpoint between orf1a and orf1b (nucleotide position 13,296-15,240) and a 3'-end of BA.2 including the S gene. We describe the available genomic and epidemiological data about this currently circulating recombinant XJ lineage.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Genomics , Humans , SARS-CoV-2/genetics
3.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786497

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1. and BA.1.1. lineages to Finland were detected early December 2021, and comprised the majority over Delta variant in 3 weeks in the capital region. Our sequence analysis demonstrates emergence of a large cluster of BA.1.1 in community transmission.

4.
Emerg Infect Dis ; 28(6): 1229-1232, 2022 06.
Article in English | MEDLINE | ID: covidwho-1775623

ABSTRACT

Multiple introductions of SARS-COV-2 Omicron variant BA.1 and BA.1.1. lineages to Finland were detected in early December 2021. Within 3 weeks, Omicron overtook Delta as the most common variant in the capital region. Sequence analysis demonstrated the emergence and spread through community transmission of a large cluster of BA.1.1 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Finland/epidemiology , Humans , SARS-CoV-2/genetics
5.
Euro Surveill ; 26(45)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1630353

ABSTRACT

We report a rapid increase in enterovirus D68 (EV-D68) infections, with 139 cases reported from eight European countries between 31 July and 14 October 2021. This upsurge is in line with the seasonality of EV-D68 and was presumably stimulated by the widespread reopening after COVID-19 lockdown. Most cases were identified in September, but more are to be expected in the coming months. Reinforcement of clinical awareness, diagnostic capacities and surveillance of EV-D68 is urgently needed in Europe.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Myelitis , Respiratory Tract Infections , Communicable Disease Control , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Europe/epidemiology , Humans , Myelitis/epidemiology , SARS-CoV-2
6.
Emerg Infect Dis ; 27(12): 3137-3141, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496966

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 Alpha and Beta variants became dominant in Finland in spring 2021 but had diminished by summer. We used phylogenetic clustering to identify sources of spreading. We found that outbreaks were mostly seeded by a few introductions, highlighting the importance of surveillance and prevention policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Finland/epidemiology , Humans , Incidence , Phylogeny
7.
Infect Dis (Lond) ; 53(11): 880-882, 2021 11.
Article in English | MEDLINE | ID: covidwho-1272944

ABSTRACT

BACKGROUND: Immunocompromised patients shed SARS-CoV-2 for extended periods, but to our knowledge person-to-person transmission from late shedding has not been reported. THE CASE: We present a case in which a COVID-19 patient infected another over 28 days after the patient's initial symptoms, past current guideline recommendations of 20 days for length of isolation in immunocompromised patients. Whole genome sequencing of their viruses was performed to ascertain the transmission. DISCUSSION: Severely immunocompromised patients, whose clearance of the virus is impaired, may remain infectious for extended periods. Caution should be taken particularly in hospital settings where lapses in isolation procedures might pose increased risk, especially to other immunocompromised patients.


Subject(s)
COVID-19 , Communicable Diseases , Humans , Immunocompromised Host , SARS-CoV-2 , Virus Shedding
8.
Euro Surveill ; 26(16)2021 04.
Article in English | MEDLINE | ID: covidwho-1200053

ABSTRACT

We compared 19,207 cases of SARS-CoV-2 variant B.1.1.7/S gene target failure (SGTF), 436 B.1.351 and 352 P.1 to non-variant cases reported by seven European countries. COVID-19 cases with these variants had significantly higher adjusted odds ratios for hospitalisation (B.1.1.7/SGTF: 1.7, 95% confidence interval (CI): 1.0-2.9; B.1.351: 3.6, 95% CI: 2.1-6.2; P.1: 2.6, 95% CI: 1.4-4.8) and B.1.1.7/SGTF and P.1 cases also for intensive care admission (B.1.1.7/SGTF: 2.3, 95% CI: 1.4-3.5; P.1: 2.2, 95% CI: 1.7-2.8).


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Europe/epidemiology , Humans
9.
Sci Total Environ ; 770: 145274, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1039563

ABSTRACT

Wastewater-based surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is used to monitor the population-level prevalence of the COVID-19 disease. In many cases, due to lockdowns or analytical delays, the analysis of wastewater samples might only be possible after prolonged storage. In this study, the effect of storage conditions on the RNA copy numbers of the SARS-CoV-2 virus in wastewater influent was studied and compared to the persistence of norovirus over time at 4 °C, -20 °C, and -75 °C using the reverse-transcription quantitative PCR (RT-qPCR) assays E-Sarbeco, N2, and norovirus GII. For the first time in Finland, the presence of SARS-CoV-2 RNA was tested in 24 h composite influent wastewater samples collected from Viikinmäki wastewater treatment plant, Helsinki, Finland. The detected and quantified SARS-CoV-2 RNA copy numbers of the wastewater sample aliquots taken during 19-20 April 2020 and stored for 29, 64, and 84 days remained surprisingly stable. In the stored samples, the SARS betacoronavirus and SARS-CoV-2 copy numbers, but not the norovirus GII copy numbers, seemed slightly higher when analyzed from the pre-centrifuged pellet-that is, the particulate matter of the influent-as compared with the supernatant (i.e., water fraction) used for ultrafiltration, although the difference was not statistically significant. Furthermore, when wastewater was spiked with SARS-CoV-2, linear decay at 4 °C was observed on the first 28 days, while no decay was visible within 58 days at -20 °C or -75 °C. In conclusion, freezing temperatures should be used for storage when immediate SARS-CoV-2 RNA analysis from the wastewater influent is not possible. Analysis of the particulate matter of the sample, in addition to the water fraction, can improve the detection frequency.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Communicable Disease Control , Finland , Humans , RNA, Viral , Wastewater
10.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: covidwho-18570

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL